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Abstract- We use linear elasticity to study a transversely isotropic (or specially orthotwpic). semi·
infinite slab in plane strain. free of traction on its faces and at infinity and subject to edge loads or
displacements that produce stresses and displacements that d~'Cay in the a~ial direction. The govern­
ing equations (which are identical to those for a strip in plane stress. free of traction on its long
sides and at infinity. and subject to tractions or displacements on its short side) are reduced. in the
standard w'ly. to a fourth-order parti,l! differential equation with buundary conditions for a
dimensionless Airy stress function. t: We study the ,Isymptotic solutions to this equation for four
sets or end conditions~·tractilm. miwd (two). displa~"Cment-as r.. Ihe ratio of the shear modulus to
the geol11i:tric mean Ill' the a~ial and transverse e~lensilll1al moduli. approaches 7.ero. In all cases. the
solutions for rconsist of a "wide" hound,lTy 1,Iyer thai decays slowly in the a~ial dir~'Ction (over a
dist,lm:e th,ll is long comp,lTed to the width of the strip) plus a "narrow" boundary layer th,lt decays
rapidly in the axial direction (,'ver a dist.mce that is short compared to the width of the strip).
Moreover. we lind th.lt the narrow tllHlI1dilry l"yer has il "SiIHI\IUS" part that varies rapidly in Ihe
Iransverse direction. tlut which. 10 lowest order. docs nol enll;r the boundilTy conditillns nor aired
the trilnSVerse nort1"" slress \IT the displacements. Bec.luse lhe e~act h.orthogonality condition li,r
the eigenfunctions associated with rcan tic repl;l\;ed tly sill1pkr orlhogon,llity condilions in the
limit 'IS I: ... O. we arc ablc to obt'lin. to 1"w~'St ,'rdcr. explicit fl1Trllulae for the codlicienls ill the
eigenfum:til1l' expansions of rfor the four different end conditions.

I. INTRODUCTION

The stress an.. lysis ofsellli-inlinite, transversely isotropic (or sped.. lly orthotropic) line,trly
elastic stripst subject to end loads or displaceml:nts not only illuminates the dependence of
S,lint-Venanrs Principle on the dastic constants of a material, but also arises in the
consideration of end etlccts in attempts to improve elementary beam theory. In particular,
if the beam is wl:ak in shear as in a strongly anisotropic composite. then such I:nd etlccts
may dominate. The problem is also intl:resting mathematically bl:cause it shows, once again,
that if an el/uation contains a parametl:r, 1:, thl:n (alkr various prdiminary scalings of the
vari"bles) the limiting forms of the equation as 1: -+ 0 may ditfl:r considerably from their
parent.

For "n elastically isotropic strip, thl: equations of linear plane strain (or plane stress)
theory may be reduced to a biharmonic equation for a dimensionless Airy stress function,
f In this case, neither the differential equation nor the boundary conditions contain a small
parameter. As Gregory and Gladwell (1982) show, it takes considerable analysis to get
useful solutions. However, as we shall show, it is easier to get solutions for a strip weak in
sheur because the governing equations now cont"in a small parameter, e, that measures,
essentially, the ratio of the shear to the geometric mean of the extensional moduli. If we
scale the independent variables properly (by fractiomtl powers of e), then solutions of the
elliptic, fourth-order partial differential equation for f and thl: associated biorthogonality
conditions simplify as e -+ O. allowing us to obtain, at least formally and to lowest order,
explicit solutions for various end data. If f. is not small. these end data, if thl:y are to imply
dec"ying solutions. cannot be totally arbitrary but must satisfy certain obvious and not so
obvious integral conditions, "s explained by Gregory and W"n (1984) and Lin and Wan
(1988). However, as f. - 0, we shall show that these integral conditions simplify consider­
ably. In the future, we hope to show how these solutions may be used to improve the lower

t That is. strips whllse axes of elastic orthotropy arc p,lralld and normal to the sides of the strips.
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natural frequ~nci~s of vibration of a cantilevered beam predicted by elementary theory.
using recent work of Duva and Simmonds (1991).

We note that asymptotic analyses of strongly anisotropic materials have been con­
sidered by other authors for fiber-reinforced composites. For example. Everstine and
Pipkin (1973) have investigated boundary-layer phenomena for end-loaded. fiber-reinforced
cantilevered beams. See also Everstine and Pipkin (1971). Spencer (1974) and the review
article by Pipkin (1979) for further details.

~. THE GOVERNING EQUATIONS

We consider a slab which. before deformation. occupies the region x ;;:: O. 1.1'1 ~ If in
a fixed Cartesian reference frame. Ox.r~. In the linear theory of plane strain. the stresses
parallel to the .\y-plane. a,. r and a,. are functions ofx and y only and satisfy the equilibrium
equations

(J,.,+r" = O. t" ..,+(J"." = O. (I)

where a comma denotes p,lrtial differentiation with respect to the subscript thut follows.
If U and V are displacements in the x- and y-directions. respectively. then the strain­

displacement relations are

(\ = (i,. Y= U... +V... (' .. = V... (2)

und the strain-stress relations for a material transversely isotropic about the x-,Ixis may
be given the form

E,(', = {1, -I·(I:',/E.. )a", G-; = r, E..(' .. = a,,-ra,. (3)

Mathematkally. ( I) ,. (3) .Ire idcntical (s,lve for dillcrent c1"lstic constants) to those relations
for a transversely isotropic clastic strip in a st"lte of plane stress.

Thc strains must satisfy the compatibility condition

and the: e:quilibrium eqns (I). may be s,ltisticd identically by se:tting

a,=F..". r=-F,x," a,,=F,n.

(4)

(5)

whe:re: F is the: Airy stre:ss function. Substituting (5) into (3) and the resulting equations
into (4), we obtain our basic tield e:quation

F.m , + (E,./C - 2\')F,,,,, .. + (E,; E.)F"n'y = O. x> 0, 1)'1 < H.

In the: following. we sh..tll assume that F is C~ on the interior of the strip.
The long sides of the strip are tr..lction free; hence. by (5).

F,,,{.'I:. ± If) = F.,r(x. ± If) = O.

(6)

(7)

We also shall assume that the stresses decay to zero as x - 00. uniformly in y. This implies
that the loads on any section x =constant are self-equilibrating. i.e. the net force and
moment vanish. Since we may always add a linear function of x and y to Fwithout affecting
the stresses. we may. without loss of generality, integrate the boundary conditions (7) with
respect to x and discard the constants of integration to obtain
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F(:c. ± H) = F.y(:C, ± H) = 0.
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(8)

Finally, we shall assume that F., and F.•. are continuous on the boundary of the strip.
On the left end of the strip, we consider four types of boundary conditions. Using the

classification of Gregory and Wan (1984), we have, for Iyl < H.

Case A: (1.(O.y) = <i,(y). r(O, y) = f(y) (9A)

Case B: (1,(0, y) = <i.(y), V(O.y) = V(y) (9B)

Case C: U(O.y) = O(y), r(O.y) = f(y) (9C)

Case 0: U(O, r) = O( ~'), V(O.y) = V(y), (90). .

where a hat (A) denotes a prescribed function.
To convert (9A) into boundary conditions on F, we first integrate the relation

F.,.,.(O,y) = li,(y) and F.,,(O.y) = -fey) with respect to y. Noting that <i.(y) and fey) are
self-equilibrating and that the first partial derivatives of F. by hypothesis. are continuous
on the boundary of the strip, we may replace (9A) by

F(O.y) = iCy) == f' (y-l)c1,(l)dl, ·F.• (O.y) = i,(y) == -f·' f(t)dt. (lOA)
·n -n

To convert (9B). we assume that V(y) is difTerentiable. It then follows from (2), (3),
(5) and (lOA) that

F(O,y) = iCy). F,,,(O,y) = [E,.V(y) + vF'(y»)'. (lOB)

To convert (9C), we assume that O(y) is twiee dilTerentiable. It then follows from (2),
(3), (5) and (IDA) that

F,,,,(O,y) = -[E,O(y)+(E•./G-v)F.(y»", F.AO,y) = i,(y). (10C)

The conversion of (90) follows from (IOC) and (lOB) as

F.n,(O,y) + (E,./G-v)F.m·(O,y) = -E•. O"ev), F..,AO,y)-vF,...,(O,y) = ErV'ev). (100)

The axial and transverse displacements, U and V, may be computed in terms of F by
first using (2), (3) and (5) to obtain

E, U•• = F"' r - v(E./E.,)F.u

GV.{{ = -[(G/E,)F"".,+(I-vG/E.. )F..u ,.].

(II)

( 12)

If we assume th,lt U and V, as well as F, decay exponentially as :c -+ co, it follows upon
integrating (11) once and (12) twice from :c to co that

and

E,U = - J;<; F...,.(l,y)dl-v(E,/E,)F.• (:c,y) ( 13)
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Gv = (GI E,)r(x- t)F",(t.y) dt- (1- vG,E, IF,(x.y).

J, NON-DIMENSIONAUZATION

( 14)

(I5)

where 0'0 is a constant reference stress.
To concentrate on the dfects of weak resistance to shearing. we now set

( 16)

We assume henceforth that f: > O. Our primary objective is to ascertain the asymptotic
character of the stresses and displacements as f: -+ 0, Further. to guarantee that we may
choose the reference stress. O'n. so that f = O( I) everywhere as t: -+ O. we assume that
\~ = O( I) and non-dimensionalize the displacements and the edge data. Fand F", of Clses
A and C as follows:

U = (rT nll/E: 4 E,'4)1: 1~1I(~.'t>. V == «(1nflIE~ !E,l!)[r. 11\(~)+r(';.ltll

f'= (1nl/!/('Il. F, =,;1 ~(E,IE'>' 4 rT ,.Jf/(IO, (17)t

Thus. our basic.: parti.t1 dillcrenlial equation. (6). the Iraction-free conditions on the sides
of the strip. (M). and the various stress/displacement conditions on the left end. (IOA)­
(IOD). t,lke the dimensionless forms

f(';. ±1):= f,,(~, ± I) = 0

f(O,'1l := /('f), f~(O,'I>:= EI,'!j~ (If)

f(O,'1> := j",<'f}. f~;(O.'tl = [1:(/0+\;/'(101'

f:dO, '1) := -I: I ![Ii('f} +(I + rl:)j~ ('0]". f~(O. '1) = I: I !j~('1)

f::~(O, '1) + (1:- I + r)f:.,.,(O, '1) = -I; I ~1i"('1), f~:(O, '1) - rf,,~(O. '1) = 1:'('0.

(I M)

( 19)

(20A)

(20B)

(20C)

(20D)

We observe that the fourth-order partial differential eqn (18) is elliptic provided that
e > O. However, as I: -+ O. we encounter a singular perturbation problcm, because formally
setting I: := 0 in (18) yields a hyperbolic equation. The expected dilliculty in satisfying all of
the boundary conditions will become apparent later [cf. the related discussion in Everstine
and Pipkin (1971) and Horgan (1982)].

From (13), (14) and (17), we obtain the following expressions for the dimcnsionless
axial and transverse displacements:

(21 )

t Without a further condilion-which we shall spt.'Cify presenlly in (:!5) where there is mOliv:llion-we
c:lnnot uniquely determine ... and I' given V.
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(22)

We may obtain three useful identities involving tl. K. C and derivatives off only at any
value of ~ by multiplying (21) by I or tf and (22) by 1_"c and integrating with respect to
'1 from - \ to I. Integrating by parts and using the traction-free boundary conditions. (19).
we obtain

f' {l.tfHll(~.")+rf.11f.;(~.,,)]d,, = O. ~ ~ 0
- I

(23)

and

(4/3)K(~) = -II [[:(1 -Il;)I'(~. 10+2(\ +v(;)11f(~.'1)ld". ~ ~ O. (24)
- I

To determine ". and I' uniquely in (\7);. given V. we shall require th<ll

(25)

Thus. (24) reduces to

(26)

Wo:. lllay now derivo:. <In expression for I' <llone. in to:.rms of./: as follows. First. we usc
(2), (5). (15) .. nd (16) to writo:. the strain stress relation (3), in the dimensionless form

(27)

Then. Integrating both sides from - I tOIl <lnd using (25) to solve for l·(~. - I), we obt<lin

(28)

4. NECESSARY CONDITIONS FOR DECAY

Gregory and Wan (1984) and Lin and Wan (\988) [see also Lin and Wan (1990)] have
derived. in ditferent w<lyS. necessary conditions for the edge data in Cases A-D to be
compatible with exponential decay of II. K. I' ,lOd f as ~ -- ::/:.,.

Overall equilibrium requires that the edge data produce no stress resultants or couple.
From (t OA) ,lOd (17) this implies th,lt

l(± I) = l(± I) = J~(± \) = O. (29)

i.e. whenever f or f: arc prescribed on the ends of the strip. these d,lta must be compatible
with the traction-frce boundary conditions (19).

To find additional necessary conditions on the edge data in Cases C and B. we set
~ = 0 in (23) and (26). and. noting (lOCb get
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(30)

(31 )

These are special cases. respectively. of eqns (5.8a. b) and (5.9) in Lin and Wan (1988).
To obtain necessary conditions for Case O. we follow Gregory and Wan (1984) and

introduce the dimensionless stress functions g'. i = {T. B. F}. where

T. Band F being mnemonics for tension. bending and flexure. and the subscript "S"
denoting the Saint-Venant solution for a strip. The associated displacements. with rigid
body terms chosen so that

are

I\:~ = (0. -(1/2)I:e. -(1/30)1:'J~[12-1:(5~J-24\~)n

I'~ = [- \~II. - (vI2)(,,~ -115), (vI2)1:' J~("J -1/5)}.

(33)

(34)

[Because the strip is weak in shear, the factor of I:I!J in the third element on the right of
(32) is necessary if the displacements in (33) and (34) are to be O( I) at e = 0.]

In 'Iddition to the basic field equation. (18). g' must satisfy the traction-free conditions

(35)

and the zero-displacement conditions

which follow from (200). The Betti Reciprocity Principle then implies that

fl [li('1)g:~~(O,'1)-I;liJI~('1)g:~,,(O.,f}ldll = {O.O,(2j3)";(O)}.
-I

Setting

g' = gi(~, '1: &) +gH~,If)

and noting (25) and (32), we may rewrite (37) as

(36)

(37)

(38)

Thus. to use (39) to find necessary conditions for decay in case O. we must find iii. That is.
the following three canonical prohlcms must be solved:
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(40)

(41 )

g~~~~(O. 17) + (e- I + V)g~~~~(O.,,) == e- 1,2 (0. O. (I + ve)17l. g~~~(O. 17) - vg:~~(O.,,) == v{ I. '1. O}.

(41)

(43)

As we shall see. the necessary conditions (30). (31) and (37) simplify considerably as
e ..... O.

5. THE EIGENVALUE PROBLEM

Choi and Horgan (1977) have shown that (18) and (19) have decaying solutions of
the form e-;'~ 0('1) •.:Jly > O. where 0 satisfies the eigenvalue problem

O(± I) == O'(± I) == O.

Further. they h.tve shown that if 0 < r. < !. then. with

the eigenfunctions are either even and proportional to

(JC == cos q .. 'I cos q. '1'1 -cos q + 'I cos q . '1'1.

where 'I satisfies the eigencondition

q _ tan q _'I == q + tan q +Y.

or else odd and proportional to

0" == sin q - 'I sin q+ Y17~sin q+ y sin q-y'l.

q _'I SIO q. y

where 'I satisfies the eigencondition

q _cot q _y = q + cot q+ y.

Because tan === tan =. the solutions of (48) and (50) occur in conjugate pairs.

(44)

(45)

(46)

(47)

(48)

(49)

(50)

Orthogonality
Let {Ok' y.d and {Ol. II} denote distinct eigensolutions of (44) and (45). Then. integrating

by parts on the left of the identity

(51 )

we obtain
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(52)

Likewise. the identities

and

lead to the relations

II ("i',l(},L(}k-,';lhUJ,)d'1 == 0
-I

(53)

(54)

and

(55)

(56)

Equations (52) and (55), duc to Grinbcrg (1953) ,lOd Choi and Horgan (1977), rcspcctively.
imply (56). As thc cigcnfunctions and cigcnvalucs arc. in gcncral. complcx. variants of thcsc
orthogonality relations may bc obtaincd by rcplacing I(J4' ".: by I114 , 'i. :.

Finally. wc notc that (55) may bc rcwrittcn us thc I'{'c/or orthogonulity condition

(57)

whcrc "T' dcnotcs "transposc",

6. ASYMPTOTIC BEHAVIOR

Our aim now is to examine the asymptotic behavior of the solutions to Cases A-D in
the limit as e .... O. To this end we first note from (46) that

Thus, the even eigencondition. (48). has the asymptotic form

(59)

Here and henceforth. it is understood lhal the asymptotic approximation symbol, "-"
carries with it the qualifier, "as e .... 0". In Appendix A. we show that .'Y = O(el~). Since
Isin (x+iY)1 and Icos(x+iY)1 are each bounded bye", it follows that the left side of (59)
vanishes as & .... 0; hence so must the right side. Thus. either

or else

"-f.-12(11I-~)7t, m=1,2, ....

Likewise. the odd eigencondition, (50), has the asymptotic form

(60)

(61 )
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e cos e I ! Y sin e- I !y ...... sin e I 1i , cos e- I. 1i ,

which may be further simplified to

1903

(62)

(63)

Because .F,· = O(e' 1) as e -+ O. the left sides of (62) and (63) vanish: hence so must the right
sides. Thus (63) implies

(0)

i' ...... eI 1 ;.k. k = I. 2•... ,

(0)

where ;.k is the kth positive root of

tan). = ;..

(64)

(65)

(See Table 4.19 of Abramowitz and Stegun. 1964.) On the other hand, if i' -+ x as e -+ O.
then (62) implies

i' ...... r.- 1/1m1t. m = 1.2..... (66)

A more detailed analysis of the eigenconditions shows that. for the small solutions of
(4X).

(II) (1)

r. 1/1}' == ;.~ = ).~+r.!A.~+0(r.4). k = 1.2.... ,

where
(0) (1)

;.~ = kIt and )'k = (3/2)kIt.

whereas for the large solutions.

(67)

(68)

(III (I)

t:'!y == A~,n = A~,-I:A~",(,;)+0(e1). ", == 1.2.... : n = o. ± I.. ... (69)

where

(I)

and A~", is the nth root of

(U)

A~n == (m - ~)1t

A == cot [(m- ~)(1t/e) -A].

(70)

(71)

these being ordered in some convenient way. Unless (m - ~ )/e is an integer, the roots of (71)
will be complex (but will occur in conjugate pairs).

Likewise. we find for the small solutions of (50) the more detailed form

(0) (1)

e-I,'!y==;.t= ;.t+e1;.t+O(e4). k= 1.2•...•

(0)

where ;.t is defined by (65) and

(2) (01

;.t = -(1/6) ).t.

and for the large solutions of (50) the more detailed form

(72)

(73)
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\111 (I)

I: I :,' A:n = A:;' +cA::'n(l:) + O(I:~). m = I. 2.... ; n = o. ± I.. . .. (74)

where

II)

and A~nn is the nth root of

101

A::' = mn

A = tan (mn!c+A).

(75)

(76)

these being ordered in some convenient way. Unless mit: is an integer. the roots of (76) will
be complex (but will occur in conjugate pairs).

Finally. we note that. because li('1). ~(O). /:('1)'/('1) andi~(t1l are. by assumption. O( I).
(31) and (3U) imply the asymptotic: necessary conditions

(2/3)~(0) - - fl ,!l('1)d,/

and

which must hold in Cases Rand C. D. respectively.

(77)

(78)

7. TilE WIDE nOUNDARY LAYER

By (47). (4<) and (58). we may express the eigenfunctions associated with the small
cigenvalucs (67) in the form

0: = cos [I:Q (I;)).~ (I:)J cos [Q .. (IV~ (I:)t/]-cos [Q .. (IVHI:)J cos [I:Q (l;))'i(e)'1]
«II

== (}~(tl)+O(I:~).

where
III)

01 = cos k1t1/- ( _ I)k.

<md the eigenfunctions associated with the small eigenvalues (72) in the form

" sin [I:Q _(1;)).~(e)J sin [Q + (e».~(e)'1J -sin [Q+ (I:)).~(I:)] sin [eQ _(e)i.~(I:)t/Jo = .-_._.._._-- ----..------..--...---.-.---.- ... ---. -----.-
k I;Q _(e».I:(e) sin [Q+ (1;)),1:(£))

\111

== 0k(tO +0(1;:).

where
(II) (Ot (Ill

Ok = csc i.1: sin i.k'1- '1.

By direct calculation. we have. with the aid of (65). the orthonormality condition.

(79)

(80)

(81 )

(82)

(83)

(0{

where e5J.1 is the Kronecker delta and Ok denotes either the even or odd asymptotic eigen­
functions. (80) or (82). respectively. This equation. for k -1= I. also follows from (52) and
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(0) (01

the asymptotic relations (60). (64). (79) and (81). Note that Ok and 0, themselves are not
orthonormal; rather. by (80) and (82).

(84)

(0' (0)

The completeness of the Llsymptotic eigenfunctions Ok and Ok is established in Appendix B.
The eigensolutions {O•• f: 1 ~ ; •.} associated with the small eigenvalues defined by (67)

and (72) lead to solutions of our basic field equation. (18). even or odd in ". of the form

x

W(:x.". E) = LodE) exp [- A..(f:)~10. (". E)
I

(0' (n
= W(:x.")+f.W(:x.")+O(f:~).

where

is a "slow" axial variable.

(Ill' (01 (0) (Ill

W = I (I. exp (- A..o:) Ok(")'
I

cn ' (I) (III Clll

W =L (Ii< exp ( - A.ko:) 0d,r).
I

and

(85)

(86)

(87)

(8R)

(IN)

We call (85) a wit!t' boundary layer because it decays within a region that is wide
(III

compared to the width of the strip. Note that W is precisely the solution we would have
obtained had we introduced the change of axial variable (86) into (18). set c = 0 in the

(Ill

resulting equation. 4md then sought solutions of the form e- h 0(,,) satisfying the traction-
free conditions (19). i.e.

(Ill COl

w.,,~~+ W.".,~., = O. 0: > O. 1,,1 < I

(0) (0)

W(:x. ± I) = W.~(:x, ± I) = O.

(90)

(91 )

(Ill

A deficiency in W-and a related deficiency of the solution (85)-arises because the partial
dilTerential equation it satisfies. (90). contains only second derivatives with respect to the

(0) (Ill

axial coordinate. Thus. the Fourier coelTIcients Ok cannot. in general. be chosen so that W
satisfies tll"O end conditions at ~ = O.

8. THE NARROW BOUNDARY LAYER

Let

oc
0< == - --- = cos q _y" - ,,;< cos q .. ;''',

cos q .. y

where. from (47) and (48).

(92)
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c cos q - "I q - Sin q - I'
1\ = ----- --- = --_:_-- ..-- .

COS q ~ {' q ~ Sin q '" l"
(93)

(94)

where. from (49) and (50).

,. sin q .. I' q - cos q I'
1\ = --,---- = .

Sl n q," i' '! ~ cos q ... i'
(95)

Then. by (58). we may express the eigenfunctions associated with the large eigenvalues (69)
in the form

where

and

III) 11. 101 III

== If;,(tJ} +r.[I\;/11(£),,$;,(11) + S~/II(1:. f:)} +O(r. z).

'C _ Q (I:) sin [Q -(I:)I\~:",(I:))

K",n = Q ~ (I:) sin[;:'Q • (I:)I\~",(I:» .

10 •

'IJ~, = cos (111- DTCI/.

{(I)

(l)~, = sin (111- !)m/.

III

(Il '" cos [(m- !)It -1:1\;/II(I:)J1:
S;", =(- I) ---------- "111- -

sin [em - ~)(1!II:) -1\~It,(I:»)

(96)

(97)

(9X)

(99)

(100)

(10 I)

is a "fast" transverse coordinate.
likewise. we may express the eigenfunctions associated with the large eigenvalues (74)

in the form

0;:111 = sin [Q .. (f:)I\;:",(f:)I/l-t:K~",(L) sin [Q ... (1:)1\;:",(1:)1:)

where

and

(01 111 101 III

== If;:, (til + i:( 1\~",(f:)11«(l~, (11) + S ~'" (1:.1:)1+ 0(1: z),

101

If;:, = si n IIl1t11.

10)

$;;, = cos mm/.

( (02)

(103)

(104)

(105)
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(I)

(I) sin [m1t+eA o (e)]r
So =(_1)"'+1 ","

"," (II •

cos [m1t!e+ A::'"(e)]

1907

(106)

The eigensolutions {a",n. e- L~Amn} associated with the large eigenvalues (69) and (74)
lead to solutions of the basic field equation. (18). even or odd in ". of the form

x

N({J.". r. e) = LLA","(e) exp [ - A",n(e){J]a",n(". t. e)
I "

(01 ( II ( II

: N({J.,,) +e[.I"({J.rp) + S ({J.". r. e)] + O(e~). (107)

where

is a "fast" axial variable. In (107).

(01 x (0) (01 (01

N: LA", exp (- A",{J) 'I'",(,,).
I

(II" (01 (IJ (II (01 (II (01

.1" : Lexp ( - A",fl){[A", - fl B", (e)] '1'",(,,) + B", $",(,,)}.
I

and
(I) '-' (U) (I)

S : Lexp ( - A",{l) S",(". r. r.).
I

(U) ( II

where. with A",,,(I:) = A "''' + r.A "''I + .. '.
(k 1 (kl

A",: LA",,,.

( II (UI ( II

B,,, : L A "''I A"''I (I:).
'I

and
( I) (Ill ( II

S",: L A "''I S",n(", r.e).

( 108)

(109)

(110)

(III)

( 112)t

(113)

(114)

(11

Using (98)-(100) and (104)-(106). we may separate the" and r dependence in S", as
follows:

where

(I) (II (01 (I) (0)

S", = C",('p)'I'",(r) + D",(". e)$",(r).

( I) (II (II) (I) ( I)

{C",. D",} = (_1)''1 L H;;'n l A "''I {COS A",n(e)". sin A",n(e),,}.
'I

( 115)

(116)

(II (II

W"," = sin [em - !)(n:!e) - A~,n(r.)] and H~,n = -cos [mn:!r.+ A::'n(r.)]. (117)

We call (107) a narrow boundary layer because it decays within a region that is narrow
(I)

compared to the width of the strip and we call S the (lowest-order) sinuous part of N
because it varies rapidly with ". Note that. because of the presence of the fast transverse
variable. r = r.- I".

Inl (0'

t It turns out that. to lowest order. we need only determine A... never A_,

SAS ~7: l5-0
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(ll) III

N.~(P.". t. e) - N.~(P. rO + S,(fJ. rp. e)

II'

N.~~(p.". t. e) - e- I S."(p.,,. t. e).

( 118)

( 119)

Had we introduced the change of axial variable (108) into (18) and then set e = O. we
would have obtained a partial differential equation with only two ,,-derivatives. implying a
concomitant loss of one of the two traction-free face conditions. (19). Then. had we looked
for solutions of the form e - /111 0(,,). and imposed only the first of (19). we would have

1111 III'

obtained N. i.e. N satisfies the partial differential equation and boundary conditions

III' (II'

N./1fll1fJ + N.fJll~? = O. fJ > O. Ir/I < I

Ill)

N(fJ. ± I) = O.

( 120)

(121 )

III,

Note that while N does not satisfy thc second of the traction-frce conditions in (19). the
(III (11

combination N.,+ S." which appears in (118). docs.
[n thc ncxt section we discuss the imposition of the edge conditions at :x = O. [n all

cases we lind that wc may satisfy the boundary conditions (0 /OIl'('S( order without having
to consider the sinuous boundary layer. This seems almost paradoxical because. as we just

Ill) ( II Ill,

noted. it is the combination N.•,+ S." and not N.? alone. that satisfies the second of the two
traction·free edge conditions.

9. EDGE CONDITIONS

Bec.luse I; . I ~ w.~ = w., = O( W) and c I ~ N.: = N./I = O(N). the form of the dil1crent
pairs of end conditions. (20A)-(20D). suggests that the complete solution of (18) satisfying
all the prescribed boundary conditions consists of the linear combination of the wide and
narrow boundary layers.

f = W(:x. ".1;) +1;N(fJ.". t.I:). ( 122)

It is obvious th'lt if the end data arc decomposed into even and odd parts. then. by linearity.
solutions for f that nre even in " mny be tre.lted independently of solutions that arc odd in
". With this understanding. we omit the superscripts "c" or "0" in what follows. Further­
more. in what follows. we proceed formally and consider only the equations for determining
1111 (III

Wand N.

Cas(' A
From (20A). (85). ([07) and (122). we have

III)

W(O.,,) = J'(,,)

and

(01 (01

N./I(O.,,) = l(I/) - w..(0. '7).

(123)

( 124)

The coefficients in (87) follow immediately from (123) and the orthogonality condition.
(83). as
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(0) II (01

at == - _I Ie,,) O;e,,) d",

19<W

(I ~5)

while the coefficients in (109) follow from (87). (I~~), and the orthogonality of
111 1 tOI

'1": = cos (m - !)rt" and '1":;' == sin mrt" as

( 126)

lO) (01

Thus, in Case A. W is determined first and then N.
Note that if /(,/) = j"(,/). i.e. if l is an odd function. then. because /"(If} must satisfy

the asymptotic necessary condition (77). we have, by (82) <llld (87).

Thus. from (87).

"t;; (0)

L elk == ~(O)
I

and hence.
(0) x (01

G I = ~(O) - L Gk',

1111 lUI (0) (UI ' III) (UI (Ill Ill)

~V" = ~(O)exp(- ,l,,'ja)(csc ;"jsin ):;"-,/)+L elnCxp(- ).k:l)(csc ).ksin A.kll-IO
,

(01 (III (Ill

-exp(- ).';a)(esl: ):;sin ):;'1-'01. (127)

Case lJ
From (20B). (85), (107) and (122). we have (123) [and henl:e (125) and (127») as

before. and, additionally,

(ll)

N.Jl/l(O.,,) = [l~e,f} + \~ l' (If} 1'.

(UI lUI

In this case Wand N are determined independently with

Case C
Matters simplify if we use (21) to replace the end condition (20C) I by

Recalling that e= 1:- Il!a == I:'/~fJ and" = I:r. we obtain from (122).

( 128)

( 129)

( 130)

rw.•• (:x,,,. 1:) doc + r.~ 1'" N.••(fJ,,,. ,,/1:, r.) dfJ + vc[ w..(0.". r.) + N.,,(O, ". ,,/r.. c)l = -li(,/)

(131 )

or, to lowest order, from (87),
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• IUl llli Ifl,

L(a.;;.• )0;('1) = -U('l).
I

( 132)

The orthogonality condition. (83). yields

( 133)

Illl

Because J~ I (I, 'I} 0;('1) d" = 0, (132) implies that (78). the asymptotic necessary conditions
for decay, are satisfied.

Illi
The coefficients in (109) are again given by (126) with ak now given by (133).

Case D
(0)

The coefficients in (87) are again given by (133). To find the coefficients Am in (109)
we use (28) at ~ = 0 as a boundary condition instead of (20D)". Inserting (122) and noting
thut ~ = E I ~::x = E I "fJ and" = E!. we find, to lowest order, that

(134)

1111

Multiplying both sides by '11;" (I/). integrating from '[ = -I to I[ = I, and noting that
Illi

\fJm ( ± I) = 0, we obtain. after a further integration by parts,

(I :\5)

1111

Substituting (87) and (109) into this expression, we have, by the orthogonality of the 'fJ",s,

( 136)

Finally. we examine the asymptotic form of (9). our alternative to the Gregory-Wan
necessary conditions for Clse D. Since the end conditions on 9 are that the associated
displacements be zero, it follows from (33) that

ii'(O.'l) = -1l~(0.11) = {0.0.(1/6)(1 +Vt:)I/('l"-3/5):.

Illi

But if i = Tor i = B. then. from (133). W =O. so that

Thus. (39) implies the asymptotic conditions (78).
The third necessary condition implied by (39) reduces. asymptotically, to

( 137)

(138)

(139)

which is the replacement for (77) when II rather than f is prescribed at the end of the strip.
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Note that gF (0. '1) is easy to compute to lowest order. which is all we need to apply (139).
For by (65). (82). (87) and (122).

x. (III (0) (0) 101
~F ~ u ( • u ) ( • o' • 0 )9 '" L.. Uk ex.p - ,.• 1 CSC ,•• sm ' .• '1-'1

I

where. by (133) and (137).

to)

= (2/3)( i.n _I.

10. LOWEST·ORDER STRESSES AND DISPLACBIENTS

From (5). (15). (118). (119) and (In), we have

(01 (II

(1./(10 = f~~ - W~~(:x. '1) + S.,,(f1. '1. t,r.)

(140)

(141 )

( 142)

(0) (01 (I)

(E,i E,») ~ (rl(1,,) = -.f~~ - - r. 1
ZUv..~(:x.,O + N./I~<ll.,O + S ./1,<11. ". t. I:)] (143)

~----_._--

(0)

(£,/£,)1 z«(1,I(1o) = f~~ - N.11/rUl.'f} (144)

while from (17), (21). (26) and (2M) we have

(£~ Z£,1. z/(1o/l) V = - (3/2)( 1+ VI:)I: I f I ',f(~. '1)d"

+fI W'114)(3 - " z)- I12] f~~ (~.,,) + (3v/2)'1f(~. 1])} d"

( 146)

An analysis of the underlined terms in (142) and (143) awaits. Note. however. that if
we are interested in computing only dominant stresses and displacements. then we need
consider only the underlined term in (142). and then only within the narrow boundary layer
at the left end of the strip.

•-tck1lo...lel/'i/·m/'1/I.~- The work ofC.O.H. was supported. in part. by the U.S. National Science Foundation (NSF)
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APPENDIX A

To c\.lIuinc thc behavior of the imagin'lry part of,' as ,: ... O. we set

(AI)

Bc..:ause we arc looking for de":;lying St,lutilllls of (Ill). we assume th'lt I'R > O. Further. without loss of gener;lhty.
we may ;llso ;ISSUl11l' Ih;lt ;', :;, 0 oel:ausc any cornple:\ roots must oc..:ur in l:onjugatc p'lirs.

Turmng lirst to the even eigel1l'lllldition. (411), we note th•• t

(A2)

where 'I stands for e,ther 'I. or 'I Thus, applying the triangle inellU;llity to the Illlmer;ltor and denUlllinator ill
(A2), we lind that If i', I- II,

lanh 'Ii', ~ Ilan '1;'1 ~ coth 'r/,· (AJ)

Now sllppose that" ",'" {' < \' is hounded away fmm lero, S;lY () < 2m ~ I; "}',. Since 2'1. > I; ': hy (46).
it follows from (4S) and (AJ) that

1'1 :"1. II tan ,{ ;'1 '" Ilan 'I , )'1 ~ t;lIlh 'I. ;', ~ tanh I: PI", ... l as I; -0. (M)

Bllt. by (5M), 1'/ 1'1.1 - I:. lIence.llan 'I ;-Imllsl grow alle;lst as nISI as I; ., as I: ... 0, On the olher h;lnd. bec;lUse
21{ > ,,' 2 and i', ;, 211/,,", it follows from (A3) thaI

" IItan'l 1'1 ~ coth q "~I ~ cOlh nll;'P.., - ---,- as I: - O.
IIll;'P" I _J

Thus. Il<.-cause I' < \. we ha~e a ,unlradil:tion. That is. as /; ... O. lite imaginary pur/i!!,,' is, a/II/ost. 0(1;' :).
We now shuw lh'lt, in f;lcl. ,', '" 0(,:' 1). To this end. we set

It then fulluws that the real and imaginary parts uf (43) have the asymptotic forms

(A5)

(A6)

(A7)

(All)

In (A 7). the factor of cosh i~, may be ,ancelled from both sides; likewise with lhe factor sinh f, in (All). prol'idt'"
,', -#- O. However. in this laller ,ase. (A1) and (All) imply that tan! " . , 2j ' R = - I. which is a contradiction. !-!ence.
,', =o( I). We can show that a similar conclusion holds for the odd eigeneondition. ($0).

APPENDIX B

Let I, be;lOy function such that It" is piccewisccontinuouson! -I. I) and It( ± I) = Ir'( ± I) '" O.thederivati·.cs
at end points being interpreted as left or right hand~-d. Further. let h be decomposd into its even and odd parts
by sclling
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h = Uh('1l+h(-'1)]+l(h('1I-h(-'!I!

= h,('11 +h.('1I.

1913

(Bl)

The conditions on h imply that h; and h: are each piecewise continuous on (- I. 1] and that h,( ±I) =
h,,( ± 1l = h;( ± I) '" h:.(± I).

To get an eigenfunction representation for h,. let

ll" _ IU,

"';,,,,1,\/2. "':=cosk1l'l. k=1.2.....

llli

Then "': satisfies the Sturm Liouville eigenvalue problem

I III lUI lUI ll)l

",:-+(k1l)'",:=0. 0<'1<1. ",:'(01==1/1:(11=0.

By a standard theorem (Courant and Hilbert. 1953. p. 360). it follows that if

.tn: Fourier coelflcicnts. then h, has the representation

to,

h, = LU'''':('')'
n

where the series lJn the right converges uniformly on (0. I). But

h,( I) == un/ Ji + ±(-I)'CI, == 0
I

Thus. solving for Un ,1l1d inserting the result into (115). we have. by (lIO).

, , (0,

h,('/) '" Lu.lcosktt,,-(-1l'1 == LU; 0:(,,).
I I

where. fronl (l0h ;ll1d (U4).

Turning to th.: r.:pres.:ntation of h... w.: lcl

IHI Il" 101 lUI

"'~', == )31'2". "'~ = esc ;.~sin A~", k == 1.2.....

1I1l (UI 1111

wher.: tan ;.~ == ;'~. Th.:n. ",r satisli.:s th.: Sturm-Liouvill.: eigenvalue probl.:m

tUI.. 1111 1111 tUI co, 101

"'~+(;.~)!"'~=O. 0<./<1. ",r(O) =0. "'{(I)-"'~(ll=O.

By the theorem ljuot.:d above. hu has the representation

I.. lUI

hu = Lb, "'~(,,).
o

wher.: th.: series converges uniformly on (0. I) and

are Fourier cocffici.:nts. But

hu(l) = J3/2bo +±b, =0.
I

Hence. solving for bo and inserting the result into (B II I. we have. by (821.

r (OJ (0' "( (01

It. =Lb,<esc A~ sin ;, ~'1 -'I) =Lb. O~('1).
I I

(B21

(B3)

(Bol)

(B5)

(B61

(B7)

(Bll)

(B9)

(BIO)

(Bll)

(BI2)

(BI3)

(BI4)
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wh~re. from (8111 and (831;.

10, Ill)

This establishes the complet~ness of the asymptotic eigenfunctions 0, and /I~.

(815)


