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Abstract— We use linear elasticity to study a transversely isotropic {or speciaily orthotropic), semi-
infinite slab in plane strain, {ree of traction on its fuces and at infinity and subject to edge loads or
displacements that produce stresses and displacements that decay in the axial direction. The govern-
ing equations (which are identical to those for a strip in plane stress, free of traction on its long
sides und atinfinity. and subject to tractions or displacements on its short side) are reduced. in the
standard way. to a fourth-order partial differential equation with boundary conditions for a
dimensionless Airy stress function, £, We study the asymptotic solutions to this equation for four
sets of end conditions —traction, mixed (two). displuicement—as ¢, the ratio of the shear modulus to
the geometric mean of the axial und transverse extensional moduli, approaches zero. In all cases. the
solutions for / consist of a “"wide” boundary layer that decays slowly in the axial direction (over a
distance that is long compared to the width of the strip) plus a “narrow™ boundary layer that decays
rapidly in the axal direction (over a distance that is short compared to the width of the strip).
Morcover, we find that the narrow boundary layer has a “sinuous”™ part that varies rapadly in the
transverse dircction, but which, to lowest order, does not enter the boundary conditions nor atfect
the transverse normal stress or the displacements, Because the exact borthogonality condition for
the cigenfunctions associated with £ can be repluced by simpler orthogonality conditions in the
Lt as £ ~ 0, we are able to obtain, to lowest order, explicit formulie for the coctlicients in the
cigenfunction expansions of £ for the four different end conditions,

1. INTRODUCTION

The stress analysis of semi-infinite, transversely isotropic (or specially orthotropic) lincarly
clastic stripst subject to end loads or displacements not only illuminates the dependence of
Saint-Venant's Principle on the elastic constants of @ material, but also arises in the
consideration of end effects in attempts to improve elementary beam theory. In particular,
if' the beam is weak in shear as in a strongly anisotropic composite, then such end effects
may dominate. The problem is also interesting mathematically because it shows, once again,
that if an equation contains a parumeter, &, then (after various preliminary scalings of the
variables) the limiting forms of the equation as £ —» 0 may differ considerably from their
parent.

For an elastically isotropic strip, the equations of linear plane strain (or plane stress)
theory may be reduced to a bihurmonic equation for a dimensionless Airy stress function,
/- In this case, neither the differential equation nor the boundary conditions contain a small
parameter, As Gregory and Gladwell (1982) show, it takes considerable analysis to get
useful solutions. However, as we shall show, it is easier to get solutions for a strip weak in
shear because the governing equations now contain a small parameter, €, that measures,
essentially, the ratio of the shear to the geometric mean of the extensional moduli. If we
scale the independent variables properly (by fractional powers of &), then solutions of the
elliptic, fourth-order partial differential equation for f and the associated biorthogonality
conditions simplify as £ — 0, allowing us to obtain, at least formally and to lowest order,
explicit solutions for various end datu. If £ is not small, these end data, if they are to imply
decaying solutions, cannot be totally arbitrary but must satisfy certain obvious and not so
obvious integral conditions, as explained by Gregory und Wan (1984) and Lin and Wan
(1988). However, as & — 0, we shall show that these integral conditions simplify consider-
ably. In the future, we hope to show how these solutions may be used to improve the lower

+ That is. strips whose axes of clastic orthotropy are paraliel and normal to the sides of the strips.
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natural frequencies of vibration of a cantilevered beam predicted by elementary theory.
using recent work of Duva and Simmonds (1991;.

We note that asymptotic analyses of strongly anisotropic materials have been con-
sidered by other authors for fiber-reinforced composites. For example, Everstine and
Pipkin (1973) have investigated boundary-layer phenomena for end-loaded, fiber-reinforced
cantilevered beams. See also Everstine and Pipkin (1971). Spencer (1974) and the review
article by Pipkin (1979) for further details.

2. THE GOVERNING EQUATIONS

We consider a slab which. before deformation. occupies the region x 2 0. [1] € Hin
a fixed Cartesian reference frame, Oxyz. In the linear theory of plane strain, the stresses
paraliel to the xy-plane. ¢,. rand ¢, are functions of x and v only and satisfy the equilibrium
equations

6\"( + r.l‘ = 0’ tn“ +GV\$‘ = 0‘ (I)
where a comma denotes partial differentiation with respect to the subscript that follows.
If U and ¥ are displucements in the x- and y-directions, respectively. then the strain-
displacement relations are

{'K = (/A§‘ ? = L/.l'+ Vv“ ()\' = V.V (2)

and the strain -streess relations for a material transversely isotropic about the v-axis may
be given the form

Ee, =06 - /EYs,, Gy=1 Ev¢ =g ~vo,. 3
Muathematically, (1)-(3) are identical (save for different elastic constants) to those relations
for a transversely isotropic elustic strip in a state of plane stress,
The strains must satisfy the compatibility condition
Crvy T +er.n' = 0 (4)
and the equilibrium eqns (1), may be satisfied identically by setting
g, = En-* T = "[:,xw G_v = E.x‘\'v (5)

!

where Fis the Airy stress function. Substituting (S) into (3) and the resulting equations
into {4), we obtain our basic field equation

F,nr\' + (E\‘//G— 21’)['..,\1”' + (Er/E\)‘[:,l‘_l‘\'}‘ = 0! x> Ov UI <H (6)

In the following, we shall assume that Fis C* on the interior of the strip.
The long sides of the strip are traction free ; hence, by (5),

Fole £H) =F (v £H) =0 (7

We also shall assume that the stresses decay to zero as x — oo, uniformly in p. This implies
that the loads on any section x = constant are self-equilibrating, i.c. the net force and
moment vanish. Since we may always add a linear function of v and » to F without affecting
the stresscs, we may. without loss of generality, integrate the boundary conditions (7} with
respect to v and discard the constants of integration to obtain
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F(x,+H)=F,(x, +H)=0. (8)

Finally, we shall assume that F and F, are continuous on the boundary of the strip.
On the left end of the strip, we consider four types of boundary conditions. Using the
classification of Gregory and Wan (1984). we have, for |y| < H,

Case A: o0(0.3)=d.(y). 10.¥)=7(y) 9A)
Case B: ¢.(0.3) =6,.(y). V(O0.») = V(») (9B)
Case C:  U(0.3) = U(y). 1(0.)) = i()) (9C)
Case D:  U(0.3) = O(y). V(0.y) = V(3. (9D)

where a hat (7) denotes a prescribed function.

To convert (9A) into boundary conditions on F, we first integrate the relation
F.(0,3) = d.(y) and F, (0.y) = —7(») with respect to y. Noting that ¢,(y) and 7(y) are
self-equilibrating and that the first partial derivatives of F, by hypothesis, are continuous
on the boundary of the strip, we may replace (9A) by

v

F(0.y) = £(») sf (y—0d(dt. F0.3) =F() =~ J
-M

t(t)yde.  (10A)
]

To convert (9B), we assume that l7(y) is differentiable. It then follows from (2), (3),
(5) and (10A) that

FO.p) = F(p). F(0,y) = [E.V(0) +vE (). (10B)

To convert (9C), we assume that () is twice differentiable. [t then follows from (2),
(3). (5) and (10A) that

F o (0.y) = =[E,O)+(EJC=VF.(»). F.0,p) = F.(». (10C)
The conversion of (YD) tollows from (10C) and (10B) as
F o0, 9) +(E,JG=V)F ., (0,y) = —E,U"(y), F.(0,)—VvF,0,y) =EV'(y). (10D)

The axial and transverse displacements, U and ¥, may be computed in terms of £ by
first using (2). (3) and (5) to obtain

E\'UJ = F._r_r_v(Ev/Ey)F,r.\' (I l)
G V..u = - [(G/Et)F.n; + (l - VG/EV)E.H)']' (12)

If we assume that U and V, as well as F, decay exponentially as x — oo, it follows upon
integrating (11) once and (12) twice from x to oo that

EU= —r F o (t.y)dt=v(E[E)F ((x.)) (13)

and
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r

GV = (G/E_,)'[ (x=0)F,, (t.v)dt = (1 =vG E)F (x. ). (14)

3. NON-DIMENSIONALIZATION
Let

x=(EJE) *HE v=Hn F=o,H f( ). (15)

where ¢, is a constant reference stress.
To concentrate on the effects of weak resistance to shearing. we now set

(EJE) (EJG=2v)=¢"'. F=wEJE) " (16)

We assume henceforth that ¢ > 0. Our primary objective is to ascertain the asymptotic
character of the stresses and displacements as £ — 0. Further, to guarantee that we may
choose the reference stress, oy, s0 that f = O(l) everywhere as ¢ — 0, we assume that
¥ = O(1) and non-dimensionalize the displacements and the edge data, Fand F,. of Cases
A and C as follows:

U= (“n”/{':: JE.'-‘)“ “:U(C—JI)- V= (a,H/E! :E: :){’7 "R(E) + (. i
F=a,13f(). F, =c XEJE) ‘oHf.(p. (1Mt
Thus, our basic partial differential equation, (6). the traction-free conditions on the sides

of the strip, (8), and the various stress/displacement conditions on the left end, (10A) -
(10D), tuke the dimensionless forms

-/:-‘~’~'~'+l; l,/:::,,;,‘i"j:,,.,.,,, =0, é >0, "” < | (18)

JE =/ £ =0 (19

SO = f). f:0,m) =" fun) (20A)

SO = f). L0, = [F+5 7 0pl (20B)
FeaOon)y = =~ latm + A+ L) 000 =" fi(n) (20C)

j:":"(o' 'I)+(8_ ‘ + i}j:,’rm(o' 'I) = —& ! :l;”('l)o j:,’.‘(ﬂv ’1) - \7/:,,,’(0, ’7) = i:,('l)' (200)

We observe that the fourth-order partial differential eqn (18) is elliptic provided that
£ > 0. However, as ¢ — 0, we encounter a singular perturbation problem, because formally
setting ¢ = 0 in (18) yields a hyperbolic equation. The expected difficulty in satisfying all of
the boundary conditions will become apparent later [cf. the related discussion in Everstine
and Pipkin (1971) and Horgan (1982)].

From (13), (14) and (17). we obtain the following expressions for the dimensionless
axial and transverse displacements :

e = -ﬁ SunCem) S =Ff(Em) (20

and

+ Without a further condition—which we shall specily presently in (25) where there is motivation—we
cannot uniguely determine & and ¢ given 1
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K+er=¢ [ V(E—C)f:,,,,,,(;.n)d{—(l +¥e) f,(E.m). (22)

.-

We may obtain three useful identities involving w. <. ¢ and derivatives of f only at any
value of & by multiplying (21) by 1 or 1 and (22) by | —#° and integrating with respect to
n from —1 to L. Integrating by parts and using the traction-free boundary conditions, (19).
we obtain

H
J L@ m+3e' S f(Emldn=0. {20 (23)
1

and

{
RN ES -.( =G m+200+Fen f(Eomldn, 20 (24)
~1
To determine x and ¢ uniquely in (17),, given V., we shall require that
i
J. (1=t mdn=0. {20 (25)
-1
Thus. (24) reduces to

4
E/3) = -(1 +*’f¢>j nf(G.mdn, 20 (26)
i

We may now derive an expression for ¢ alone, in terms of f; as follows. First, we use
(2). (5). (15) and (16) to write the strain-stress relation (3), in the dimensionless form

l'# = /“ - f',l.tsm' (2?)

Then, integrating both sides trom — 1 to y and using (25) to solve for v(&, — 1), we obtain

i n
v= [ ‘ UG =0y =172 £ + GV 2 S (G} d'H-j ‘f::(f‘ii) du—v/,(&n).

(28)

4. NECESSARY CONDITIONS FOR DECAY

Gregory and Wan (1984) and Lin and Wan (1988) [see also Lin and Wan (1990)] have
derived. in different ways, necessary conditions for the edge data in Cases A-D to be
compatible with exponential decay of w, x, ¢t and fus & — .

Overall equilibrium requires that the edge data produce no stress resultants or couple.
From (10A) and (17) this implics that

f(2) = f(xh = (=0, (29)

1.e. whenever f or [, are prescribed on the ends of the strip, these data must be compatible
with the traction-free boundary conditions (19).

To find additional necessary conditions on the edge data in Cases C and B, we set
¢ = 01in (23) and (26}. and. noting (20C}., get



1900 C. O. HOorGaN and J. G. SiMMONDS

j (Lo} a(n) +vefi(m]dn =0 (30
and
1
(2/3)8(0) = —(l+»’e)J nf(m)dn. 3n

These are special cases, respectively, of eqns (5.8a.b) and (5.9) in Lin and Wan (1988).
To obtain necessary conditions for Case D, we follow Gregory and Wan (1984) and
introduce the dimensionless stress functions ¢'. ¢ = {T.B.F}. where

g' ~gs = (1207 (16’ —(1/6)e" *an(n* =3} as &— =%, (32
T. B and F being mnemonics for tension, bending and flexure, and the subscript S

denoting the Saint-Venant solution for a strip. The associated displacements, with rigid
body terms chosen so that

H H
J CLontug(0, ) dy = J (L= E mdy =0,
1 |

are
wy = Lot e 2 — (126 + (16) (1 +Fe)n(n’ = 3/5)) (33)
kb = {0, = (1/2)ed?, = (1/30)s" FE[12—(5E* = 240)]}
eh= =T = 2007 = 1/5). G130 = 1/5)}. (34)

[Because the strip is weak in shear, the fuctor of &' in the third clement on the right of
(32) is necessary if the displacements in (33) and (34) are to be O(1) at & = 0]
In addition to the basic field equation, (18), ¢’ must satisfy the traction-free conditions
9elS ) =g, £ =0 (35)
and the zero-displacement conditions
[0.m) + (6" + 09l (0, 1) = g2 (0,) — Vg, (0.) = 0 (36)

R

which follow from (20D). The Betti Reciprocity Principle then implies that

f . [£i(n) g1y (0. 1) — "6 () g5, (0.m] dy = {0,0.(2/3)K(0)}. (37)

Setting
=g'(&.nie)+gsE.m) (38)

and noting (25) and (32), we may rewrite (37) as
1
f ‘ () (1. 0F +0° () g (0, m) +&" (N G0, mldy = {0.0.2/3)K(®}.  (39)

Thus, to use (39) to find necessary conditions for decay in case D, we must find §°. That is,
the following three canonical problems must be solved :
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G e G+ G =0, >0, I <1 (40)
§gGE =4, £D)=0, 4b

GO+ + NGl (0.m) = e 2 {0.0.(1+ ¥ §5:(0.m) — 7§, (0. m) = ¥{1.n.0},
(42)

§.§'-—0 as {—oc, uniformlying. (43)

As we shall see, the necessary conditions (30), (31) and (37) simplify considerably as
e—0.

5. THE EIGENVALUE PROBLEM

Choi and Horgan (1977) have shown that (18) and (19) have decaying solutions of
the form e~ 8(n). Ay > 0, where 8 satisfies the eigenvalue problem

LO =0 +y0"+ey*0=0, In <1, (44)
W =0(+£1) =0 (45)
Further, they have shown that if 0 < &£ < 1, then, with
2, = o 21 e -2, (46)
the cigenfunctions are cither even and proportional to
0° =cosq.ycosSq,yn—cos g,y cosq .y, 47
where y satisfies the eigencondition
g-tang.y=gq,tangq.y, (48)
or else odd and proportional to

_sing_ysing,yn—sing,ysing._yn

0° :
g_ysing,y

. (49)

where y satisfies the eigencondition

g-cotqg y=gqg,cotq,y. (50)
Because tan # = {an Z, the solutions of (48) and (50) occur in conjugate pairs.
Orthogonality

Let {0., v} and {0,,y,} denote distinct cigensolutions of (44) and (45). Then, integrating
by parts on the left of the identity

1
J (OILO,‘ “"0‘ LO/) dn = 0. (5 l)
'

we obtain
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1 1
j 0:(mbi(n)dn = 6(;'E+',',’)J O.(mb(mdn. k#1L (52)
-1 -1
Likewise, the identities
ol
(}'/19/[-91( —7:0.L0)dn =0 (53)
J-1
and
1
(}'fUILok —'/':0/([-01) dn=0 (54)
J-1
lead to the relations
1 1
j 8 (mo; (n) dn = ‘/i‘/fJ' 0 (mOi(mdn. k #1 (55)
_ -1
and
| 1
6(7E+7f)f 0y (m7 () dn = ','E','ff .o dn. k #1. (56)
1 i

Equations (52) and (55), duc to Grinberg (1953) and Choi and Horgan (1977), respectively,
imply (56). As the cigenfunctions and cigenvalues are, in general, complex, variants of these
orthogonality relations may be obtained by replacing [0, 74} by {RAS

Finally. we note that (55) may be rewritten as the cector orthogonality condition

|
f [0 (n). 720 (m1L07 (). 170} Ay = 0,k #1 (57)
|
where T denotes ““truanspose”.

6. ASYMPTOTIC BEHAVIOR

Our aim now is to examine the asymptotic behavior of the solutions to Cases A-D in
the limit as £ = 0. To this end we first note from (46) that

£ = Q () = 1+ +0(") and e'g, =0, () = |-k +OEY).  (58)

Thus, the even eigencondition, (48), has the asymptotic form

esing' *ycose Vi ~cose'Pysing My 59)

Here and henceforth, it is understood that the asymptotic approximation symbol, "~
carries with it the qualifier, “as £ —» 0", In Appendix A, we show that .#y = O("?). Since
|sin (x+iy)| and |cos(x+iy)| are each bounded by e', it follows that the left side of (59)
vanishes as ¢ — 0; hence so must the right side. Thus, either

v~&"kn, k=12..., (60)
or clse

y~e X m=Yn. m=1.2,.... 61)

Likewise, the odd eigencondition, (50), has the asymptotic form
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gcose' “ysing '’y ~sing' *ycosg My (62)
which may be further simplified to
e sing 'y ~ycose ¥y if |y| is bounded. (63)

Because .y = O(c' °) as ¢ — 0. the left sides of (62) and (63) vanish ; hence so must the right
sides. Thus (63) implies

y~e"ig k=12, (64)
[}
where Aif is the kth positive root of
tanl = 4. (65)

(Sce Table 4.19 of Abramowitz and Stegun, 1964.) On the other hand, if y = o as ¢ = 0.
then (62) implies

v~e Vimn, m=1.2.... (66)

A more detailed analysis of the eigenconditions shows that, for the small solutions of
(48).

(m (2
ey == 4t A540@EY, k=12, (67)
where
(0) (4]
A =kn and Af = (3/2)kn, (68)
whercas for the lurge solutions,
, {n T .
7y = A= AL =eAL @ +0E), m=12...0 n=0%1.... (69
where
(0
Ay = (m=Yn (70)
n
and A%, is the nth root of
A = cot [(m—})(n/e) — A). an

these being ordered in some convenient way. Unless (m — 1)/e is an integer, the roots of (71)
will be complex (but will occur in conjugate pairs).
Likewise, we find for the small solutions of (50) the more detailed form

(0) ()
ey = Al = Ap+eTAl+0(Y), k=1,2,.... (72)
T
where 4} is defined by (65) and
@ (0
ig = —(1/6) Ag, (73)

and for the large solutions of (50) the more detailed form
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({1 (S5

e E AL = AL+EALE)+0ET). m=1.2....; n=0.+1...., (74)

where

i

AS, =mn {75}

h
and A}, is the nth root of

A = tan{mnje+ A), {(76)
these being ordered in some convenient way. Unless m/e is an integer, the roots of (76) will
be complex (but will occur in conjugate pairs).

Finally. we note that. because i(n). £(0). com. fop atndﬁ(n) are, by assumption, O(1).
(31) and (30) umply the asymprotic necessary conditions

{
(2/3)K(0) ~ —~f n/(m dy 7
-1
and
H
J o dn ~ 0 (78)
-1
which must hold in Cases B and C, D, respectively.
7. THE WIDE BOUNDARY LAYER

By (47), (49) and (58). we may cxpress the cigenfunctions associated with the small
cigenvaluces (67) in the form

I

0F = cos [0 _ (£} ()] cos [Q . (&) As ()] —cos [Q . ()i (e)] cos [£Q  (£)Ai(e)n]

(5]

05y + 0y, &)

]

where

{0y
0% = cos knp—(—1)~, (80)

and the cigenfunctions associated with the small eigenvalues (72) in the form

o = sin [eQ _ (£) 4 (¢)] sin [Q, ()43 (e)n] —sin [Q, (£) A (e)] sin [£Q _ ()4 (e)]
‘ £Q _(£)A(e) sin [0, (£)45(8)]

= 05+ 07, (81)

where

(i (‘.H . m
(¢ = csc Aigsin Agn—n. (82)

By direct calculation, we have, with the aid of (65), the orthonormality condition,

P om n b (m Lo
1 O Oi(n)dn = — | O 07 (m) dnp = 04, A, (33)

(M
where J,, is the Kronecker delta and 8, denotes either the even or odd asymptotic eigen-
functions, (80) or (82), respectively. This equation, for & # /, also follows from (52) and
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(1) 0
the asymptotic relations (60). (64), (79) and (81). Note that 8, and 6, themselves are not

orthonormal ; rather, by (80) and (82),

[T o Vo 0)
4[ 05(m 05(m dn =y +2(—1)**' and J 02(n) 07 (mdn = 6, +2/3.  (84)
-1 l

0 (UH
The completeness of the usymptotic eigenfunctions 05 and 07 is established in Appendix B.

The eigensolutions {6,.¢' *4,} associated with the small eigenvalues defined by (67)
and (72) lead to solutions of our basic field equation, (18). even or odd in . of the form

Wia. n.. €) = Y a(e)exp [— Ac(e)2]0 (n.€)
1

(W] th

= W(a,n)+eW(a.n)+0(). (85)
where
o= (86)
is a “slow™ axial variable,
(m T I
W =3 a,exp(— 42 0,(n). (87)
1
th . (h m {m
W=3 a,exp (= Aa)0.(n). (88)
[}
and
{th (R)} N
a4 = ay+ea+0(7). (89)

We call (85) a wide boundary layer because it decays within a region that is wide
(0)

compared to the width of the strip. Note that W is precisely the solution we would have
obtained had we introduced the change of axial variable (86)0into (18). set ¢ = 0 in the
(0

resulting equation, and then sought solutions of the form e~** (n) satisfying the traction-
free conditions (19), i.e.

(0 ()

W+ Wy =0, >0, Inl < (90)

Pt

(0 [}

W(a, +1) = W (a, +1) = 0. CIN

h
A deficiency in W—and a related deficiency of the solution (85) —arises because the partial

differential equation it satisfies, (90), contains only second derivatives with respect to the
[

. . . . (M .
axial coordinate. Thus, the Fourier cocflicients a, cannot, in general, be chosen so that W
satisfies /wo end conditions at x = 0.

8. THE NARROW BOUNDARY LAYER
Let

oc

]

— = COS$ ¢ _yn—K°COS ¢, V1, 92
oS ¢, 7 q.-7m q.7n (92)

where, from (47) and (48).
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f = S0S4-7 _q-sing.y

= : . 93
cosq.y q.sing.y
Likewise, let
Q°= —g_y9° =sing_n—«"sing._7n. (94)
where. from (49) and (50),
o_Sing.y _q.cosq.y (95)

sing.7? ¢.cosq.y

Then. by (58). we may express the eigenfunctions associated with the large eigenvalues {(69)
in the form

5, = cos[Q_(e)AL.(e)n] —eK..(e) cos [Q . (DAL, (6)1].
= \{I'crm(q’ 5) ...{;S’c'm(r. 2:)

th (1) () (1

= W5, () + e[ AL (D5 (m + S5 )] +O(). (96)
where
. Q ()sin[Q ()AL ()] ]
o= D e S h - 7
Ko Q. ()ysinfe '@, (DALL)] o7
(i
W = cos (m— Y. (9%)
{48
@F, = sin (- Y)my, {99)
. (8]
(81 ~ye ~ 1 —~eA°S (&
Sfmv = (- l)'" Loj[gm._-m “ Al':‘:’(f ) lt . (100)
sin [(m — $)(n/e) — AL, ()]
and
1= 'y (1o

is a "fast’ transverse coordinate.
Likewise, we may express the eigenfunctions associated with the large cigenvalues (74)
in the form

O = sin[Q . ()AL ()] — K0, (8) sin [Q L (£)A.(0)1]
= W0 8) — S0, (1,6)

[§}] {1 {1 th

= Wo (n) + e[ AR (o (n) + Sh.(t.0)] + 0%, (102)
where
. Q. (e)cos [Q (&)AL.(e)]

K, = - - . 103
0. @ cosle 0. (DAL B (199

n
Yo, = sin mmy, (104)

@
@3, = cos mnayn, {105)

and
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n
(gf... P sin [mn+eAL.(e)]t

M . (106)
cos [mn/e+ A}, (¢)]

The eigensolutions {@,,,. ¢~ ""*A,,,} associated with the large eigenvalues (69) and (74)
lead to solutions of the basic field equation, (18). even or odd in 5, of the form

N(B.n.1,8) = 3.3 Amn(€) €XP [ = Arn(6)B]O,n (1. 7. 6)
| n

(0 (R3] [}
= N(B.n)+e[ V' (B.n.e)+ S(B.n.1.8)] + O(e%). (107
where
p=¢"% (108)
is a “*fast’ axial variable. [n (107),
{M < (0 (L] (N
N =Y Anexp (= AB)¥a(n). (109)
|
(l). © (1] n n (4] 1)y (0
4 = Y exp (= AP {[An— P B ()] Yu(n) + B, D.(m)}. (110)
1
and
(H x o (hH
S =Y exp(—ALf) S.(n.t.8), (1)
|

W (1
thrc- Wlth A,,,,,(l:) = Amn+£Amn+ T

k) (k)
A=Y A, (12t
hH {n (n
B"ﬂ E Z INHAID"'(E)' (l l3)
and
n m (n
Sm = Z Aum Smn(n' T, 6)~ (‘ 14)

H
Using (98)-(100) and (104)-(106), we may separate the n and t dependence in S, as
follows:

) (n ) (tn (0
Sw = Cu(n.8)¥m(t) + Dy (n, £) P (1), (115)

where
N (n m n tn

{Cm Dy} = (= D)"Y Hol Aa{cos A (e)n. sin A (e)n}, (116)

H;,, = sin[(m— é)(n/s)—(ll\)f,,,,(t:)] and H,, = —cos [mn/&:+(1l\)§’,.,.(n)]. (17

We call (107) a narrow boundary layer bcczmscl it decays within a region that is narrow
(4]

compared to the width of the strip and we call § the (lowest-order) sinuous part of N
because it varies rapidly with n. Note that, because of the presence of the fast transverse

variable, t = £ ',

(L] ("
t 1t turns out that, to lowest order, we need only determine A, never A .

SAS 27:15-D
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{0y b

N,B.n.t.e) ~ N, (B.n)+ S.(B.n.t¢) (118)

and

N (B.n.t.e)~e 'S, . (B.n.1.¢). (119)

Had we introduced the change of axial variable (108) into (18) and then set ¢ = 0, we
would have obtained a partial differential equation with only two -derivatives, implying a
concomitant loss of one of the two traction-free face conditions, (19). Then. had we looked

for solutig,ns of %he form e * ©(n). and imposed only the first of (19). we would have
) [§1]]

obtained N, i.e. N satisfies the partial differential equation and boundary conditions

0y {n

Npppp+ Nppun = 0. B>0. Il <1 (120)

[Ri])

N, £1)=0. (12n

()

Note that whi(!c N o‘:ioes not satisfy the second of the traction-free conditions in (19), the
(A1) (1

combination N ,+ § . which appears in (118). does.

In the next section we discuss the imposition of the edge conditions at x = 0. In all
cases we find that we may satisfy the boundary conditions ro lowest order without having
to consider the sinuous bour&;jary(!;’lycr. This Sﬁfms almost paradoxical because, as we just
noted, it is the combination N+ § .. and not NV, alone, that satisfies the second of the two
traction-free edge conditions.

9. EDGE CONDITIONS

Because ¢ "W, = W, = O(W) and ¢' N, = N, = O(N), the form of the different
pairs of end conditions, (20A)—-(20D), suggests that the complete solution of (18) satisfying
all the prescribed boundary conditions consists of the lincar combination of the wide und
narrow boundary layers,

S =W ne)+eN(fn t.e). (122)

It is obvious that if the end data are decomposed into even and odd parts, then, by linearity,
solutions for f that are even in n may be treated independently of solutions that are odd in
n. With this understanding, we omit the superscripts "¢’ or 0™ in what follows. Further-

more, in what follows, we proceed formally and consider only the equations for determining
) (i

Wand N.

Cuase A
From (20A), (85), (107) and (122), we have
m
w(0.n) = f(n) (123)
and
(0 . )
NpO.m) = f:() — W,(0.n). (124)

The coefficients in (87) follow immediately from (123) and the orthogonality condition,
(83). as
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(0) ! n -
a, = —j-_ . F(n) 67(n) dn. (125)

while the coefficients in (109) follow from (87). (124). and the orthogonality of
(K]

oy

W, = cos (m— )y and WS, = sin mnny as

(m 0 ! . X (0) () (0) TN
An=—(A)"" S+ ai de Oi(m) | (n) dn. (126)
' 1

{0) Q)
Thus. in Case A, W is determined first and then N.

Note that if f(n) = f“(n). ie. iff' is an odd function, then, because f"‘(q) must satisfy
the asymptotic necessary condition (77). we have, by (82) and (87),

o (m . o (M
Y af = K(0) and hence. a, = K(0)-Y af.
i :

Thus, from (87),

{mn (R4 (K] . (m L ) m (m . (I1))
W = k(0)exp (— Aja){csc 4 sin /.‘{r/-—q)-&-}: dailexp (= Aja)(csc Aysin Ain—n)
b

(m (0 . m
—exp(— AYa)(ese A7sin A=) (127)

Cuse B
From (20B), (85), (107) and (122). we have (123) [and hence (125) and (127)] as

before, and, additionally,

(g

N gp(0.7) = [EoD +3 ] (] (128)

{0 tm
In this case W and N are determined independently with

() 0h | oy
A, = (A,")‘zf [ + £ () .. (n) dyy. (129)

Cuse C
Matters simplify if we use (21) to replace the end condition (20C), by

J‘ G dE+3f(0.n) = —&” u(n). (130)

12

Recalling that € = £~ "2a = ¢"*f and n = ¢1, we obtain from (122),

©

J" W (2. n.€) da+ezj Nam(B.n.nfe.e) dB + Ve[ W (0.n.€) + N (0. n.n/e.£)] = —i(n)

(131

or, to lowest order, from (87),
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x gy 0 U

Y (a i) 0200 = —alm). (132)
i

The orthogonality condition, (83), yields

(Lt

0 n L
= (A" f i) 6,(n) dn. (133)
}

N
Becausej"_ o} 85(n)y dn = 0, (132) implies that (78). the asymptotic necessary conditions

for decay. are satisfied.
The coefficients in (109) are again given by (126) with (z(;:k now given by (133).

Case D
th

The coefficients in (87) are again given by (133). To find the coefficients 4, in (109)
we use {28) at ¢ = 0 as a boundary condition instead of (20D);. Inserting (122) and noting
that = ¢ ' *a = ¢' ‘B and 5 = er. we find. to lowest order, that

(0 i

i
j G —n") = JN 0.+ G¥ 2w (0. )} dy
-

" 0y [£133
+J N (0, 1y dpe=¥W (0,) = £0p). (134)
o

tm
Multiplying both sides by W, (y), integrating from 5= —1 to n = |, and noting that
{8}
W+ 1) = 0, we obtain, after a further integration by parts,

Vom (0 ! (n (o
- N O W, (n)dy = [E0ny+ ¥ W (0, )}, 00 dny. (135)
i i

(U]
Substituting (87) and (109) into this expression, we have, by the orthogonulity of the s,

M {hn {0y

) w o “,,
Ay=—=(A) | [ED+T Y a 0] do. (136)
- |

Finally, we examine the asymptotic form of (39), our alternative to the Gregory-Wan
necessary conditions for Case D. Since the end conditions on ¢ are that the associated
displacements be zero, it follows from (33) that

#0,m) = —us(0,n) = {0,0, (1/6)(1 +Ve)y(n” —3/5)}. (137)

tn

Butifi= Tori= B, then, from (133), W = 0, so that
g =0, §.=0@"?)., j={T B8} (138)

Thus, (39) implies the asymptotic conditions {78).
The third necessary condition implied by (39) reduccs, asymptotically, to

(2/3)r(0) ~ J

' @ (g (0, ) dn. (139)

which is the replacement for (77) when u rather than f'is prescribed at the end of the strip.
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Note that §¥(0.n) is easy to compute to lowest order, which is all we need to apply (139).
For by (65). (82), (87) and (122),

z t0 (D
g~ Y alexp(— Aga)(csc Afsin Agn—n) (140)
i

where, by (133) and (137).

m m ! s m o
ay = (1;6)(4) " | n(n*=3/5)(csc A¢sin ign—n)dy
1

()

= (2/3) (2" (141)

10. LOWEST-ORDER STRESSES AND DISPLACEMENTS
From (5). (15). (118), (119) and (122), we have

«n th

0./60 = foq ~ Wy (.M + S (B.n.1.8) (142)

n (h

(1]
(EJE) *t)oy) = —f ~ —&" W2+ N (B, ")+i/‘_‘(_ﬁlﬂflf),] (143)

(m

(E\/Er)l :(”‘/”u) = ./::; ~ N_/m(/f' n (1494)

while from (17), (21), (26) and (28) we have

Lo

([:.-‘ 41“.11' 4/”0”)('/ = —J‘ j;w(;' ") d;—i/;(:.']) ~ =& : :J‘ u/.m,'(“"]) dl‘ (145)

1
(E'E M a )V = = (3/2)(1 + ve)e 'J nf(E, n)dy
0

1
+j AL G =) =12 L Gan)+ B3 Gam} dn

L)

+J_|/:::(s‘.#)d#—"f,,(i,'l) ~ —(3/2)8"J. l'IW(C'~'1)d'I- (146)

An analysis of the underlined terms in (142) and (143) awaits. Note, however, that if
we are interested in computing only dominant stresses and displacements, then we need
consider only the underlined term in (142), and then only within the narrow boundary layer
at the left end of the strip.
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APPENDIX A

To examine the behavior of the imaginary part of 3 as £~ 0, we set
7= Te i {Al)

Because we are looking for decaying solutions of {18), we assume that 7o > 0. Further, without loss of generality,
we may also assume that 3 > 0 because any complex roots must oceur in conjugiate pairs.
Turning first to the even cigencondition, (48), we note that

¢ Mg WO g

ftan gyl = (A2}

C g -’m’,cwz'.

where g stands for cither ¢, or ¢ . Thus, applying the triangle incquality to the numerator and denominator in
{AY), we tind that i 3, # 0,

tanh ¢y, < [tan ¢y € coth ¢3y. (A})

Now suppose that £ "y, p < L is bounded away from zero, say 0 < 2m € ¢ "y, Since 24, > & ' 7 by (d6).
it follows from (4%) and (A} that

lg.jq, litang 71 = {tang,yl 2 tanh g,y 2tanhe P Pm—1 ay £—0. {Ad)

But, by (58). l¢ /g,] ~ & Hence, [tun ¢ | must grow at least as fast as £ ' as & = 0. On the other hand, beciuse
2y > &' fund 2 2met, it follows from (A3) that
ftang 7] Scothg.y € cothme# 3 < —vy a8 E— 0. {AS)
et
Thus, because p < !, we have a contradiction, That is, as ¢ = 0, the imaginary part of 7 is, at most, Q' %),
We now show that, in fuct, 3, = o(e'?). To this end, we set

y=yetic' i §o=00) (A6)

It then follows that the real and imaginary parts of (48) huve the asymptotic forms

etane' *ye cosh ) ~ tan &7 ' *pecosh F, (AT

~gtan &y sinh § ~ cot ™ "y sinh 7. (A8)

In (A7), the fuctor of cosh 7, may be cancelled from both sides; likewise with the factor sinh §, in (A8), provided
% # 0. However, in this latter case, (A7) and {AB) imply that tan® ¢ "' *yx = = [, which is a contradiction. Hence,
& = o(1). We can show that a similar conclusion holds for the odd cigencondition, {50).

APPENDIX B

Let # be any function such that /1" is piccewise continuouson [ — L L and #{ £ 1) = #7( £ 1) = O, the derivatives
al end points being interpreted as left or right handed. Further, let £ be decomposd into its even and odd parts
by setting
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h = {[A(n) +A(—m)] + L{A(m) ~h(—~m)]
= h(n)+h,(n). (Bl)

The conditions on 4 imply that A7 and A are each piecewise contnuous on [—1.1] and that A(+1) =
haED =h(xl)=h(zl)
To get an eigenfunction representation for A,. let

(]} m

s = l,'V’E. i =cosknn, k=12 .. (B2)

tin
Then ¢ satisfies the Sturm-Liouville eigenvalue problem

I t «wn «n

Ui +hm i =0, D<np<tl. YO =vi(l)=0. (B3)

By a standard theorem (Courant and Hilbert, 1953, p. 360). it follows that if
' o
a, = ?-j hmyilndn, (84)
0

are Fourier coefficients, then A, has the representation
r m
he =L acdion. (BS)
o
where the series on the right converges uniformly on [0, 1). But

h(1) = ao/ S2+F (= 1)'ay = 0. (B6)
!

Thus, solving for g, and inserting the result into (BS), we have, by (80),
3 ’ h
hom) = ¥ afcoskanp=(— D' = ¥ a, 05(n), (87
1 [}
where, from (X3), and (B4),

! tn
a4 = - J_ . h (M0 (0] dn. (BS)

Turning to the representation of i, we let

[LL] —= i [(H] w

Uh =3 Wi =escilsindin, k=12, (BY)

o ) oy
where tan 27 = 4}, Then, ¢} satisfies the Sturm-Liouville eigenvalue problem

[T tn U] «h

(0) o
YUFADYE =0, Ol 0 =0, vi(D)-yi(h =0 (B10)

By the theorem quoted above, A, hus the representation

«

(L]
hy =Y bl (BI)

where the series converges uniformly on [0, 1] and

| )
b, = ZJ. hy(m¢2(n) dn (B12)
o
are Fourier coeflicients. But
Ay = J3/2b,+ 3 b, = 0. (B13)
]

Hence, solving for A, and inserting the result into (BI1), we have, by (82),

m m b m

hy = Y blesc Asin Aln—m) =Y b, 03 (n). (B14)
] i
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where, from (Bl1) and (83)..

t i
o= —| AMmioiop] dn.
-

[gi]) [

This establishes the completeness of the asymptotic eigenfunctions 05 and #}.

(B15)



